p=lg9/lg32=2lg3/5lg2
lg3=5plg2/2=(5p/2)(1-lg5)
q=lg25/lg27
=2lg5/3lg3
所以lg3=2lg5/(3q)
所以(5p/2)(1-lg5)=2lg5/(3q)
(5p/2)-(5p/2)lg5=2lg5/(3q)
(5p/2+2/3q)lg5=5p/2
lg5=15pq/(15pq+4)
P=lg9/lg32=(2*lg3)/(5*lg2)
Q=lg25/lg27=(2*lg5)/(3*lg3)
单纯用P,Q无法表示lg5, 因为lg2或者lg3无法都消掉。
lg5=4PQ/15+4PQ
lg2=1-lg5,代如PQ整理即可
log32(9)=P即log(2^5)(3^2)=P即(2/5)*log2(3)=P即lg3/lg2=5P/2……(1)
同理(2/3)*log3(5)=Q即lg5/lg3=3Q/2……(2)
(1)*(2)得:
lg5/lg2=15PQ/4
lg5/(1-lg5)=15PQ/4
即
lg5=15pq/(15pq+4)
先有:log32(9)=(2/5)log2(3)=(2/5)(lg3/lg2),log27(25)=(2/3)log3(5)=(2/3)(lg5/lg3),
再有:P*Q=(4/15)(lg5/lg2),
所以:lg5=(15*lg2)/4P*Q