y = xln(2+1/x) = xln[(2x+1)/x] 定义域 (2x+1)/x > 0, x∈(-∞, -1/2)∪(0, +∞)
lim< x→(-1/2)- > xln(2+1/x) = -∞ ;
lim< x→0+ > xln(2+1/x) = lim< x→0+ > ln(2+1/x)/(1/x) (∞/∞)
= lim< x→0+ > (-1/x^2)/(2+1/x)/(-1/x^2) = lim< x→0+ > x/(2x+1) = 0 .
则有垂直渐近线 x = -1/2。
设斜渐近线 y = kx+b
k = lim
b = lim
= lim
= lim
斜渐近线 y = xln2 + 1/2